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Thrombomodulin as a regulat
or of the anticoagulant
pathway: implication in the development of thrombosis
Georgia Anastasiou, Argyri Gialeraki, Efrossyni Merkouri, Marianna Politou
and Anthi Travlou
Thrombomodulin is a cell surface-expressed glycoprotein

that serves as a cofactor for thrombin-mediated activation

of protein C (PC), an event further amplified by the

endothelial cell PC receptor. The PC pathway is a major

anticoagulant mechanism that downregulates thrombin

formation and hedges thrombus formation. The objectives

of this review were to review recent findings regarding

thrombomodulin structure, its involvement in the regulation

of hemostasis and further discuss the implication, if any, of

the genetic polymorphisms in the thrombomodulin gene in

the risk of development of thrombosis. We performed a

literature search by using electronic bibliographic

databases. Although the direct evaluation of risk situations

associated with thrombomodulin mutations/

polymorphisms could be of clinical significance, it appears

that mutations that affect the function of thrombomodulin

are rarely associated with venous thromboembolism.

However, several polymorphisms are reported to be

associated with increased risk for arterial thrombosis.
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Introduction
Venous thromboembolism (VTE) constitutes a major

medical threat, affecting one to three in 1000 individuals

annually in the western world. It is a multifactorial

disease, which is triggered by the interaction between

genetic and acquired risk factors that affect a delicate

balance between procoagulant and anticoagulant forces.

In the last 50 years, the molecular base of blood coagu-

lation and the anticoagulant mechanisms that counteract

it have been largely elucidated. The protein C (PC)

pathway is a major anticoagulant mechanism that down-

regulates thrombin formation limits inflammatory

responses and potentially decreases endothelial cell

apoptosis. As far as regulation of thrombin generation

regarded, the PC system controls the activation of pro-

coagulant proteins factor X (FX) and FII (prothrombin)

that promote fibrin formation [1–5]. The essential com-

ponents of the pathway involve thrombin (T), thrombo-

modulin, the endothelial PC receptor (EPCR), PC and

protein S. PC is a vitamin K-dependent protein that

serves as the key component of the system after its

activation by thrombin. Activation of PC is achieved

on the surface of vascular endothelial cells by thrombin

bound to the transmembrane glycoprotein thrombomo-

dulin [6–8]. Activated PC (APC) modulates blood coagu-

lation by cleaving peptide bonds in activated

procoagulant factors VIII (FVIIIa) and V (FVa) that serve
as cofactors in the activation of FX and prothrombin

(FII), respectively, promotes fibrinolysis through the

inhibition of plasminogen activator inhibitor-1 and finally

reduces inflammation by decreasing white blood cell and

nuclear factor-kB (NF-kB) activation. The APC-

mediated inactivation of FVIIIa and FVa occurs on the

surface of negatively charged phospholipid membranes.

Although FVIIIa and FVa are highly sensitive to APC,

they are partially protected in the assembled tenase

(FIXa, FVIIIa) and prothrombinase (FXa, FVa, phospho-

lipids, Caþþ) complexes, as their respective enzymes,

FIXa and FXa, sterically hinder APC (Fig. 1). There are

several APC-sensitive sites in both FVIIIa (Arg336 and

Arg562) and FVa (Arg306, Arg506 and Arg679), and

cleavage by APC results in loss of binding sites for the

enzymes FIXa and FXa, respectively, dissociation of

fragments and disintegration of the FVIIIa and FVa

molecules [9–14].

Thrombomodulin is present on the surface of endothelial

cells and binds with high affinity to thrombin that is

generated in the vicinity of intact endothelium. This

binding is associated with loss of the procoagulant activi-

ties of thrombin and gain of the ability to activate PC.

The highest concentration of thrombomodulin in the

circulation is detected in the capillary bed, where the

surface to volume ratio reaches its maximum. The high
horized reproduction of this article is prohibited.
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thrombomodulin concentration in the microcirculation is

crucial for local PC activation and blood anticoagulation

[15–17]. Additionally, EPCR, another endothelial cell

protein, binds to the Gla domain of PC and enhances

activation of PC by the thrombin–thrombomodulin com-

plex. The generated APC has a relatively long half-life in

the circulation (approximately 20 min) and is slowly

inhibited by PC inhibitor, a1-antitrypsin or a2-macro-

globulin [18–20].

The activity of APC is stimulated by protein S, a vitamin

K-dependent protein cofactor. Protein S is sufficient for

the inactivation of FVa, whereas regulation of FVIIIa in

the tenase complex requires the synergistic contribution

of both protein S and FV, suggesting that FV potentially

expresses both procoagulant and anticoagulant properties

[2,13]. Plasma concentration of FVIII is almost two orders

of magnitude lower than that of FV. As a consequence,

during activation of coagulation, tenase complexes are

scarce in comparison to the abundant prothrombinase

complexes. This may explain the need for the two APC

cofactors – protein S and FV – for the regulation of

tenase, whereas one cofactor – protein S – suffices in the

regulation of prothrombinase complexes [4,5,21–23].

Anticoagulant proteins are not only essential to maintain

blood hemostasis but are also implicated in the supply of

oxygen and nutrients to tissue cells and the removal of

toxic byproducts from metabolism [24]. Normal APC

generation depends on a precise complex formation

composed of at least four proteins on the surface of

endothelial cells: thrombin, thrombomodulin, PC and

EPCR [5,13]. Genetic and acquired alterations of the

anticoagulant properties of the PC system constitute

major risk factors for venous thrombosis [25–27]. Con-

genital or/and acquired deficiencies of PC, protein S and

antithrombin can lead to development of deep vein

thrombosis with the possibility of producing lung emboli

as well as fetal growth restriction and miscarriage [28,29].

Point mutations in the APC cleavage sites of FVIIIa and
opyright © Lippincott Williams & Wilkins. Unauth
FVa lead to resistance to APC and, thus, modify the risk

for development of thrombosis. FV Leiden (FV 1691G/

A) is the most common mutation that is associated with

increased risk for development of thrombosis, especially

when associated with environmental stimuli such as

trauma, labor, surgery and prolonged immobilization

[30–37]. Several reports support the association between

mutations in thrombomodulin and EPCR genes and venous

and/or arterial thrombosis [38–40]. In this review, we

summarize the current available literature on thrombo-

modulin structure and function as well as the involve-

ment in the development of thrombosis. Finally we

discuss the recent advances in the contribution of throm-
bomodulin gene mutations and/or polymorphisms in the

risk of venous and/or arterial thrombosis. We performed a

comprehensive literature search by using electronic

bibliographic databases (PubMed), using the following

as keywords: thrombomodulin, protein C pathway,

venous thrombosis, arterial thrombosis and our search

spanned years 1980–2011.

Thrombomodulin: structure and function
Thrombomodulin is a transmembrane endothelial cell

surface glycoprotein of blood vessels, which is involved in

coagulation, inflammation and cancer development and

plays a role during embryogenesis. The human thrombo-
modulin intronless gene is located on chromosome 20p12-

cem and its expression is controlled by areas within the

promoter. These include a cap site at �164, a TATA box

at�194, a GCAAT ‘CAT’ homology sequence at�278 as

well as three GGGCGG hexanucleotide motifs and a

complementary sequence at positions �132, �144, �168

and �210 upstream of the cap site, which are regions for

interaction with the Sp1 transcription factor [41].

The human mature single-chain glycoprotein is 557

amino acids long including the first methionine and

the signal peptide and does not possess intrinsic enzy-

matic activity. The main regions of the signal peptide,

spanning 16 amino acids, are a hydrophobic core and a

termination region enriched in prolines. Thrombomodu-

lin is also expressed in the placental syncytiotrophoblast

in which its expression and functional activity increase

with gestational age. The mature protein is composed of

five structural domains: an N-terminal lectin-like

module, six endothelial growth factor (EGF)-like repeats,

a Ser/Thr-rich region, a transmembrane region and a short

cytoplasmic tail (Fig. 2) [42–48].

The N-terminal domain is a 154-amino acid residue

module with homology to other C-type lectins and com-

prises about half of the extracellular part of the molecule

[48,49]. Electron microscopy and computer models

indicate that the lectin-like domain of thrombomodulin

is globular and situated furthest away from the plasma

membrane, so that it might effectively and easily interact

with other molecules [50,51]. This domain is essential for

receptor endocytosis and participates in the regulation of
orized reproduction of this article is prohibited.
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Fig. 2
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tumor growth. It also downregulates NF-kB and mitogen-

activated protein kinase (MAPK) pathways, which are

involved in endothelial cell activation and in setting the

scenery for endothelial cell dysfunction [52]. Early stu-

dies confirmed, however, that although this domain lacks

anticoagulant function, it is involved in inflammation and

cell adhesion [43,44,49–51,53–67].

The best characterized domain is composed of six EGF-

like repeats, which form an extended stalk in the extra-

cellular part of thrombomodulin, providing a structure

that is optimally suited for complex protein–protein

interactions. This domain has mitogenic effects on cul-

tured fibroblasts and vascular smooth muscle cells

mediated via activation of protein kinase C and MAPKs.

The clinical significance of these findings has not been

elucidated, but a possible role in cellular proliferation and

atherogenesis is suggested [68,69]. Although the function

of the first two EGF-like repeats (furthest from the Ser/

Thr-rich region) remains unknown, the others are crucial

for activation of PC and thrombin activatable fibrinolysis

inhibitor (TAFI) by thrombin [70–73]. EGF5–6 is cru-

cial for thrombin binding (via its anion-binding exosite I),

whereas EGF4–6 is required for activation of PC [74]. In

contrast, activation of TAFI by thrombin–thrombomo-

dulin requires EGF3–6 [75]. Additional antifibrinolytic

activity is supported by the EGF-like repeats of throm-

bomodulin, as they also accelerate thrombin-mediated

conversion of single-chain urokinase-type plasminogen

activator to thrombin-cleaved 2-chain urokinase-type

plasminogen activator [76], thereby interfering with

the generation of plasmin [77,78]. In addition to their

antifibrinolytic function via TAFI activation, the EGF-

like repeats of thrombomodulin also accelerate thrombin-

mediated inactivation of single-chain urokinase-type

plasminogen activator. For this reaction to proceed,

EGF5-6 and chondroitin sulfate, a stretch of approxi-

mately 20 repeating disaccharide units with a trisacchar-

ide terminus, are required. The chondroitin sulfate,

which may be variably expressed in different vascular

beds, has additional functions (see below) [76].

A Ser/Thr-rich region extends between the sixth EGF

module and the transmembrane domain and contains
Copyright © Lippincott Williams & Wilkins. Unaut
seven N-glycosylation and O-glycosylation sites, which

support the attachment of chondroitin sulfate. Once

modified with the chondroitin sulfate, thrombomodulin

enhances the PC activity, accelerates the neutralization

of thrombin by heparin–antithrombin and by the PC

inhibitor and facilitates binding of platelet factor 4 to PC

to accelerate its activation [79]. Thrombomodulin has a

short cytoplasmic tail, deletion of which has no effect on

development, survival, coagulation or inflammation in

mice [47].

Summarizing, thrombomodulin has several distinct func-

tions that are located in different structural domains.

Thrombomodoulin possesses at least three independent

anticoagulant activities: it catalyzes thrombin activation

of PC to APC, it binds to thrombin and alters thrombin

substrate specificity by inhibiting thrombin-mediated

clotting of fibrinogen, activation of platelets and procoa-

gulant factors V, VIII, XI, XIII and finally it catalyzes the

inhibition of thrombin by antithrombin. When thrombin

is complexed with thrombomodulin in vivo, PC activation

is enhanced over 1000-fold. PC activation by the throm-

bin–thrombomodulin complex is further enhanced 20-

fold in vivo when PC is bound to EPCR [80,81].

Soluble thrombomodulin in health and
disease
Thrombomodulin expression is not restricted to the cell

membrane and also exists in a soluble form in plasma

generated by enzymatic cleavage of the intact protein

[82,83]. Under normal conditions, levels of soluble

thrombomodulin in the plasma range from 3 to 50 ng/

ml [52]. Higher levels of soluble thrombomodulin,

possibly cleaved from endothelial cells by neutrophil-

derived enzymes, indicate disorders associated with vas-

cular damage, including a variety of infections, sepsis and

inflammation [43,53,54]. Several studies suggest that

plasma thrombomodulin levels may be inversely corre-

lated with the development of coronary heart disease

(CHD), implying that soluble forms of thrombomodulin

may be vasculoprotective [55–57]. It is not yet clarified

which proteolytic fragments of thrombomodulin provide
horized reproduction of this article is prohibited.
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protection, although likely candidates include EGF1–6

and/or the lectin-like domain.

Thrombomodulin in inflammation
Thrombomodulin also possesses well defined anti-

inflammatory properties, as coagulation proteases and

their cofactors can modify the outcome of severe inflam-

mation by engaging signaling-competent cell surface

receptors. Thus, thrombomodulin provides a definite

molecular bridge that links inflammation and coagu-

lation. [15,16]. There are additional indirect mechanisms

by which thrombomodulin may provide anti-inflamma-

tory protection. It controls the complement arm of the

innate immune system in a thrombin-dependent manner

through activation of the thrombin activatable inhibitor

of fibrinolysis (TAFI), and in a thrombin-independent,

constitutive manner via its lectin-like extracellular

domain; and inhibits the inflammatory effects of high-

mobility box group 1 protein [84]. An intact thrombin–

thrombomodulin complex is required for TAFIa to sup-

press complement activation (C5a and C3a). Further-

more, when associated with thrombomodulin, the pro-

inflammatory properties of thrombin are abrogated and

indeed reversed. As thrombomodulin redirects thrombin

activity, thrombomodulin is effectively, however,

indirectly an anti-inflammatory molecule by its trait of

being a sink of thrombin [69,85,86].

The amino terminal C-type lectin-like domain of throm-

bomodulin has direct anti-inflammatory properties by

mediating signals that interfere with MAPK and NF-

kB pathways. The C-type lectin-like domain maintains

the integrity of cell–cell interactions and, thus, might also

prevent leukocyte transmigration. It extenuates the

response of the vascular endothelium to pro-inflamma-

tory stimuli by suppressing activation of well conserved

intracellular pathways. Finally, it suppresses expression

of intercellular adhesion molecule-1 [15,43].

Animal models
Animal models have added significant knowledge to our

understanding of thrombomodulin function. The most

convincing evidence that reduced thrombomodulin func-

tion enhances thrombus formation is derived from animal

studies. Administration of thrombomodulin in mice and

rats attenuates the consequences of thrombin-induced

thromboembolism, whereas injection of antibodies that

inhibit thrombomodulin-dependent PC activation aggra-

vates the consequences of thrombin injection [87,88].

Weiler-Guettler et al. [89] demonstrated that knockin mice

with a thrombomodulin mutant bearing a Glu387Pro

single nucleotide polymorphism (SNP) corresponding to

human thrombomodulin exhibit a prothrombotic disorder.

This amino acid change is located between the interdo-

main loop of the fourth and fifth EGF-like domains and

abolishes the ability of soluble thrombomodulin (sTM) to

catalyze in-vitro thrombin activation of PC to APC.
opyright © Lippincott Williams & Wilkins. Unauth
Transgenic mice with single nucleotide modification lead-

ing to Glu387Pro substitution (TMPro) develop normally

and are viable, although PC activation is reduced to less

than 5%, and thrombomodulin surface expression is only

one-third of normal. The mice show a mild hypercoagul-

able state associated with vascular bed-specific fibrin

deposition, moderately accelerated platelet thrombus for-

mation and a strong predilection for stasis-induced throm-

bosis. TMPro animals do not develop spontaneous

thrombosis. Superimposed fibrinolytic defects (i.e. tissue

plasminogen activator deficiency) elicit spontaneous myo-

cardial microvascular thrombosis in TMPro mice [90].

Substantial loss of thrombomodulin cofactor function in

TMPro mice produces only a mild hypercoagulable state,

and overt thrombosis occurs only in the presence of

additional genetic defects or pathological challenges.

Thrombomodulin is also a substantial component of the

anticoagulant mechanism for the prevention of thrombosis

[91]. Generation of thrombomodulin-deficient (TM�/�)

chimeric mice by inactivating both alleles of the thrombo-
modulin gene in murine embryonic stem cells revealed that

the actual physical size of the TM�/� area or procoagulant

loci limits fibrin formation and deposition. However, the

fibrin deposits were largely restricted to pulmonary vessels

with a lumenal area greater than 100 mm2. These obser-

vations suggest that localized thrombomodulin deficiency,

as it occurs in atherosclerotic lesions or iatrogenic endo-

thelial cell damage [92,93], triggers localized coagulation

and thrombosis.

Isermann et al. [94] established a mouse model by con-

ditional thrombomodulin gene ablation only in endothelial

cells. Only 60% of the mutant mice survive beyond birth,

yet they succumb to a severe hypercoagulable state and

massive thrombosis after 3 weeks, terminating in a lethal

consumptive coagulopathy. Disease onset and pro-

gression could be prevented by warfarin anticoagulation.

Unexpectedly, the remaining 40% of mutant mice suc-

cumb to a novel developmental defect not observed in

completely thrombomodulin-deficient mice.

Regulation of expression of thrombomodulin
The complex regulation of thrombomodulin underlines

its importance in a wide variety of pathophysiologic

conditions and biological systems. Thrombomodulin is

transcriptionally upregulated by vascular EGF, hista-

mine, dibutyryl cAMP, retinoic acid, theophylline, heat

shock proteins and statins [16,95,96]. Its transcription is

downregulated by shear stress, hemodynamic forces,

hypoxia, oxidized low-density lipoprotein and transform-

ing growth factor-b [97]. Although tumor necrosis factor-

a (TNFa) and interleukin-1b upregulate thrombomo-

dulin expression in THP-1 cells [98], these cytokines

effectively suppress thrombomodulin messenger RNA

and cell surface functional protein levels in endothelial

cells via inhibition of transcription and stimulation of

endocytosis [99,100]. Thrombomodulin PC cofactor
orized reproduction of this article is prohibited.
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activity can be abrogated by oxidation of a methionine in

the EGF-like repeat, as it might occur during inflam-

mation as a result of neutrophil activation [101].

The involvement of thrombin in the regulation of expres-

sion of thrombomodulin is controversial. Thrombin is

either suggested to upregulate thrombomodulin expres-

sion [16] or to result in reduced thrombomodulin expres-

sion in primary cultures of human endothelial cells by

approximately 40% at the level of mRNA, protein and

activity [102]. The latter results suggest that activation of

the coagulation cascade may result in a positive feedback

loop consisting of thrombin-mediated repression of

thrombomodulin-dependent PC activation.

Polymorphisms/mutations in the
thrombomodulin gene and venous thrombosis
Normal APC generation depends on the precise coupling

of thrombin and PC to their respective receptors, throm-

bomodulin and EPCR on the surface of endothelial cells.

Any change in the efficiency of this coupling may cause

altered APC generation and modification in the risk of

thrombosis. In fact, several polymorphisms or mutations

in the coding region and the promoter region of the

thrombomodulin gene have been studied regarding the

association with the risk of venous thrombosis. The

influence of these polymorphisms over the level or the

activity of thrombomodulin is unclear.

Le Flem et al. [103] analyzed the distal promoter region of

the thrombomodulin in patients with VTE. Eight novel

mutations were found, the more frequent being the

�1748G/C and the del �1208/1209TT polymorphisms.

The mutated alleles were not more frequent in patients

than in controls: the odds ratios (OR) adjusted for age and

sex were 0.90 and 0.92 for the �1748G/C and del �1208/

1209TT mutations, respectively, suggesting that these

mutations are not risk factors for thrombosis. Patients

with the del�TT allele were more likely to have varicose

veins of the lower limbs than patients with the wild-type

allele (33 vs. 17%, P¼ 0.007). This deletion was also in

tight linkage disequilibrium in cases and controls

(P< 0.01) with the 1418C/T mutation. Furthermore, a

point mutation in the promoter region (�33G/A) could

not be clearly associated with increased risk for VTE

[104].

The �33G/A mutation is located 7-nt upstream of the

TATA box, within a promoter region important for basal

thrombomodulin gene transcriptional activity and in the

vicinity of the putative TNFa and heat shock responsive

sequences. It is well established that efficient transcrip-

tion initiation of a human protein-encoding gene requires

assembly on the promoter DNA of several components

such as a multiprotein complex containing RNA poly-

merase II, transcription factors and a consensus sequence

(G/C-G/C-G/A-CGCC) located immediately upstream of

the TATA box. These transcription factors can interact
Copyright © Lippincott Williams & Wilkins. Unaut
with transcription complexes and, thus, support transcrip-

tion initiation. Being located in this consensus sequence,

the �33G/A mutation might, therefore, induce a down-

regulation of the thrombomodulin promoter. Le Flem

et al. [104] found that �33G/A mutation was more fre-

quent in the patients (0.97%) than in the controls (0.25%)

and might be a risk factor for venous thrombosis. To

investigate the effect of this mutation on the thrombo-

modulin promoter activity, the proximal promoter region

of the gene (either bearing or not bearing the �33G/A

mutation) was inserted into a promotorless expression

vector, upstream of the firefly luciferase gene and transi-

ently transfected into EA.hy926 endothelial cells. The

presence of �33G/A mutation was associated with mild

decrease in the promoter activity. These results do not

clearly support the hypothesis of the �33G/A mutation

being a risk factor for VTE by lowering the expression of

the thrombomodulin gene on vascular endothelial cells.

Heit et al. [105] reported that although mutations within

the lectin, EGF6 and 30-untranslated regions (127G/A,

1418T/C, del �1752C and 3645G/A, respectively) were

more common than mutations within the thrombomodu-

lin promoter, EGF1-5, Ser/Thr-rich region, transmem-

brane and cytoplasm regions, which were either absent or

uncommon, none of them could be identified as a risk

factor for incident VTE. The ORs for an association of

these mutations with VTE were 1.07 [95% confidence

interval (CI) 0.15–7.86], 1.09 (95% CI 0.73–1.62), 0.56

(95% CI 0.10–3.11) and 0.83 (95% CI 0.56–1.22) for the

127G/A, 1418T/C, del �1752C and 3645G/A, respect-

ively. Null genetic marker allele frequencies did not

differ significantly among cases and controls. Norlund

et al. [106] reported a case of a heterozygous 127G/A

mutation, which supports the hypothesis of an association

between mutations in the thrombomodulin gene and

venous thrombosis.

Ohlin and Marlar [107] identified another point mutation

in the thrombomodulin gene occurring in a patient with

pulmonary embolism. DNA sequence analysis revealed a

1456G/T substitution, which results in an Asp468Tyr

change. This mutant was recently expressed in Cos cells

and no impairment of thrombomodulin expression and

function could be demonstrated [108]. Another study

suggested that mutations that affect the function of

thrombomodulin (1418C/T) are rarely in association with

VTE and low sTM levels, as these levels are affected by a

number of variables apart from gene integrity [109]. It

appears that mutations that affect the function of throm-

bomodulin are rarely associated with VTE (Table 1)

[103–105,109]. The fact that thrombomodulin is a key

protein of the PC pathway and this pathway has a central

role in coagulation inhibition is difficult to reconcile. A

possible explanation is that severe deficiencies of throm-

bomodulin are incompatible with life. Moreover, a recent

study on the expression of thrombomodulin in placental

tissue from spontaneous recurrent miscarriage and
horized reproduction of this article is prohibited.
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Table 1 Venous thromboembolism

Polymorphisms Number of patients Odds ratio Reference

�1748 G/C 327 0.90 [105]
del �1208/1209 TT 327 0.92 [105]
�33 G/A 205 0.97 [106]
127 G/A 223 1.07 [107]
1418 C/T 223 1.09 [107]
del �1752 C 223 0.56 [107]
3645 G/A 223 0.83 [107]
1418 C/T 192 1.00 [111]

Association of thrombomodulin polymorphisms with the risk of developing venous
thrombosis.
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voluntary abortions revealed reduced expression in tis-

sues originating from women with miscarriages compared

with controls [110]. As no severe thrombomodulin

deficiencies have been identified in patients with throm-

bosis, it can be postulated that thrombomodulin

mutations, in the absence of PC deficiency, might not

be associated with large vessel thrombosis, as thrombo-

modulin has a major role particularly in the capillary beds.

Polymorphisms/mutations in the
thrombomodulin gene and arterial thrombosis
There are several data in the literature concerning the

association between thrombomodulin gene polymorph-

isms and atherosclerosis or myocardial infraction (MI).

This is surprising considering that other mutations dis-

rupting the function of the PC pathway, such as the FV

Leiden mutation, tend to increase the risk of venous, but

affect marginally the risk for arterial thrombosis

[111,112]. This discrepancy may reflect the fact that

thrombomodulin can modulate inflammatory processes,

complement activity and fibrinolysis in a manner that

depends on PC activation.

As previously reported, the �33G/A SNP is not a well

established risk factor for VTE. However, it was signifi-

cantly associated with MI (OR 1.5, 95% CI 1.0–2.2) [113]

and coronary artery disease (OR 1.7, P¼ 0.031) in a

Chinese population [114]. Moreover, a dimorphism at

codon 455, 1418C/T transition resulting in an Ala455Val

substitution in the EGF6 domain of thrombomodulin,

was also reported to be associated with MI. Wu et al. [115]

suggested that this polymorphism has been associated

with coronary events among African–Americans patients

in the Arteriosclerosis Risk in Communities (ARIC)

study. Presence of the T allele increased risk of CHD

by 6.1-fold (risk ratio 6.1, 95% CI 1.7–22.9) in blacks, but

did not significantly increase the risk in whites, when

adjusted for age, sex and other CHD risk factors. In the

Stroke Prevention in Young Women study [116], there

was a significant relationship between 1418C/T poly-

morphism and risk of early-onset ischemic stroke. The

CC genotype compared with the CT and TT genotypes

combined was significantly associated with stroke (OR

1.9, 95% CI 1.1–3.3). The prevalence of the CC genotype
opyright © Lippincott Williams & Wilkins. Unauth
was 81% (59 of 73) for blacks and 68% (93 of 137) for

whites. Blacks were significantly more likely to have the

CC genotype than the CT and TT genotypes (38.8 vs.

24.1%, P< 0.05). Ohlin et al. [117] demonstrated that that

the C allele in the 1418C/T dimorphism is significantly

more frequent among survivors of premature myocardial

infarction.

Recently, the FINRISK national study analyzed eight

common SNPs of the thrombomodulin gene (including

1418C/T, del �1208/1209TT and �33G/A) [118] and

found no consistent association between thrombomodulin
gene SNPs and incident coronary events, incident brain

infarctions and total mortality. The SNP allelic frequen-

cies did not differ significantly between the incident

cases and members of the subcohort. The majority of the

altogether 35 haplotypes observed in the datasets were

rare: only seven haplotypes had a frequency of more than

5%. Olivot et al. [119] found that a polymorphism in

coding sequence 1418C/T and two polymorphisms of

thrombomodulin gene promoters �1748G/C and del

�1208/1209TT were in linkage disequilibrium, whereas

they were not associated with brain infarction risk by

either single-locus analysis or haplotype analysis

(P¼ 0.94). The thrombomodulin genotype distributions

were compatible with Hardy–Weinberg equilibrium

among cases and controls (P> 0.24). The �1748G/C

was in negative linkage disequilibrium with del

�1208/1209TT and 1418C/T in cases (P< 0.10) and

controls (P< 0.005). A strong positive linkage disequili-

brium between del �1208/1209TT and 1418C/T

(P< 0.0001) was also reported. The three SNPs defined

three major haplotypes accounting for 93.3% of

all chromosomes.

The 127G/A mutation predicting an Ala25Thr substi-

tution within the lectin-like domain is associated with a

two-fold increased risk for MI, and a positive interaction

of this polymorphism with acquired risk factors has been

demonstrated [120,121]. This point mutation does not

alter the ability of thrombomodulin to activate PC [39],

implying either linkage of this polymorphism with

another mutation or impairment of PC-independent

thrombomodulin functions of the lectin-like thrombomo-

dulin domain [44]. Doggen et al. [121] studied the 127G/A

mutation in two independent studies, a pilot study of 104

patients with MI and a larger ‘Study of Myocardial

Infarctions Leiden’ (SMILE), and came to the con-

clusion that the 127G/A mutation in the thrombomodulin
gene increases the risk of MI among men (OR 2.0, 95%

CI 0.8–5.1). This risk increases even more in the pre-

sence of another cardiovascular risk factor such as smok-

ing or a metabolic risk factor.

Five mutations (three distinct) were identified (�9/10

GG/AT, �33G /A, and �133C/A) in the promoter region

of the thrombomodulin gene and were detected to be in

close proximity to consensus sequences for transcription
orized reproduction of this article is prohibited.
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Table 2 Arterial thrombosis

Polymorphisms Event Number of patients Odds ratio Reference

�33 G/A MI 278 1.50 [115]
�33 G/A CAD 320 1.70 [116]
1418 C/T CHD 467 6.10 [117]
1418 C/T IS 141 1.90 [118]
127 G/A MI 560 2.00 [123]
�9/10 GG/AT, �33 G/A, �133 C/A MI 104 5.20 [124]

Association of thrombomodulin polymorphisms with the risk of developing arterial thrombosis. CAD, coronary artery disease; CHD, coronary heart disease; IS, ischemic
stroke; MI, myocardial infraction.
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control elements within the thrombomodulin gene. Only

one of these mutations was identified in the control group

(�33G /A). The risk of MI was, therefore, approximately

five times increased in patients with a mutation (OR 5.2,

95% CI 0.6–45.3) (Table 2) [113–116,121,122].

Conclusion
The importance of the PC pathway is endorsed by the

observation that PC deficiency, protein S deficiency and

FV Leiden mutation are associated with an increased risk

of thromboembolic events that are either spontaneous or

triggered by circumstantial risk factors [31,123–125].

Genetic abnormalities affecting thrombomodulin should

theoretically result in a compromised PC pathway and be

associated with thrombosis. Screening for thrombomodulin
gene mutations in patients with thrombotic disease has

revealed several mutations and/or polymorphisms, some

of which are associated with venous and/or arterial throm-

bosis [30,36,103]. Mutations leading to severe

deficiencies of thrombomodulin may be incompatible

with life. Although still mostly circumstantial, current

evidence supports that development of thrombosis might

be associated with other thrombomodulin gene mutations.

Although thrombomodulin is a potential mediator of

thrombosis, development of the disease cannot be solely

attributed to such mutations. Additional genetic or

acquired risk factors seem to be involved in the patho-

genesis of thrombosis. It is well established that the most

prevalent risk factors for development of venous throm-

bosis [PC, protein S, antithrombin (AT), FV Leiden] are

associated with gene products that exhibit reduced bio-

logical activity, as detected by functional testing. How-

ever, there is no extensive knowledge to which extent

mutations within the thrombomodulin gene affect its bio-

logical activity. Combined defects such as FV Leiden and

AT/PC/protein S deficiency are also frequent and associ-

ated with increased risk of thrombosis [126–128]. Other

candidates might include genes coding for further antic-

oagulant components like prothrombin (FII), fibrinogen,

factor XII, cystathionine-b-synthase, methylenetetrahy-

drofolate reductase and tissue factor pathway inhibitor. It

is well documented that the risk of thrombosis is

increased when several genes are affected. Nevertheless,

it is still unclear whether thrombomodulin gene mutations

are part of this complex multigenetic disorder.
Copyright © Lippincott Williams & Wilkins. Unaut
The association between thrombomodulin gene poly-

morphisms and arterial thrombosis seems to be more

established. This association may be attributed to the

fact that thrombomodulin can modulate inflammatory

processes, complement activity and fibrinolysis in a PC

activation dependent way.

Further studies including a larger number of patients are

needed in order to clarify the implication, of any, of

genetic polymorphisms in the thrombomodulin gene in

the risk of development of thrombosis. Finally, the

interaction between well identified genetic and/or

acquired risk factors for thrombosis and thrombomodulin

mutations/polymorphisms should be investigated.
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