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A B S T R A C T

Blood transfusion is an essential and irreplaceable part of modern medicine, as a therapeutic modality or ad-
ditional support to other clinical therapies. Nevertheless, the entire procedure from blood collection to ad-
ministration, absorbs a significant amount of resources and has a number of problems that need to be addressed.
The paucity of donors, the transmission of pathogenic microorganisms and the overall costs of the process have
switched the scientific interest to the quest of alternative transfusion methods. The industrial ex vivo production
of transfusable red blood cells capable of replacing a unit of packed red blood cells is a very attractive prospect,
let alone the idea of a massive production of such a biological material. Various scientific groups, by exploiting
erythropoiesis, the stem cells’ characteristics and the constantly renewed knowledge in the fields of collection,
culture, preservation and expansion of stem cells, have made significant progress towards the realization of such
an idea. All three major sources of stem cells, haematopoietic stem/progenitor cells, human embryonic stem cells
and induced pluripotent stem cells are thought to be capable of generating adequate amounts of red blood cells.
By further studying and refining the in vitro red cell production protocols, it is anticipated that the economic and
biotechnological obstacles of the current methods will be overcome in the near future. This manuscript is a brief
revisit of their current state of the art, potentials and obstacles that are associated with industrial and clinical
application issues.

1. Introduction

Transfusion of red blood cells (RBCs) has become an indispensable
therapeutic intervention. It improves the quality of life in patients with
chronic anaemia [1] and it can be life-saving in several circumstances
[2]. However, the blood supply depends on donations and there is a
worldwide shortage of RBC units. Based on WHO’s fact sheets, the
annual global blood collection is reported to be about 112.5 million
units [3]. This number is incapable of fulfilling the annual global needs
in blood transfusions which are estimated to be more than 300 million
units [4]. Such an imbalance is not just calculated from discrepancies in
the demand and supply of blood but also from the variable number of
blood donations reported from different countries around the world
[5]. Approximately half of the units are derived from high income

countries, which accommodate only 15% of the world’s population [6].
Apart from that, the age of the transfused patients also differs be-

tween countries. In developing countries 65% of blood units are
transfused to children under 5 years old, whereas in developed coun-
tries the majority of blood supply is distributed to patients over 65 years
of age [3]. Although it seems that in western countries transfusion
needs are met, it is anticipated that blood supply even in these cases
will likely become insufficient by 2050. These calculations are based on
the increased life expectancy of the world’s population combined with
the transfusion demands of advanced western medicine [7].

As far as blood safety is concerned, current technologies can detect
the vast majority of transfusion transmitted diseases but the risk has not
been eliminated; the presence of the “window period” for the known
pathogens along with the emerging pathogens, make the risk real [8].
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Moreover, in most of the developing countries the screening potential is
insufficient while blood transfusion may be also complicated with ad-
verse reactions [9]. All these complications add further costs either by
increasing the need for new screening tests for new pathogens or by
hospitalizations [10,11]. Keeping these concerns in mind, the concept
of developing surrogate transfusion products seems an attractive and
probably unavoidable option.

One promising solution is the production of transfusion-quality
RBCs from human cell sources [12]. This innovative approach poses
two major questions that need to be addressed, namely, identification
of the most appropriate source of human stem cells and their culture
conditions for large scale production of RBCs. Artificial blood has al-
ready been used in the laboratory for experimental purposes; however,
the clinical use of such a product requires ex vivo generated RBCs
functionally equivalent to native RBCs, a heavy technological feat that
has not yet been accomplished [13,14].

2. The starting point issue

The main source materials for the production of RBCs in vitro are
the haematopoietic stem/progenitor cells (HSPCs), the embryonic stem
cells (ESCs) and the induced pluripotent stem cells (iPSCs) [5,12].
These types of stem cells can differentiate into RBCs via culture pro-
tocols consisting of three main stages: commitment, expansion and
maturation [15,16].

The produced RBCs should be evaluated in vivo for survival, func-
tionality, and safety. The reported studies so far have been performed in
mouse models. To ensure survival of the cultured RBCs, the animal
should become a cross-species permissive host. This is achieved by in-
ducing a state of immunodeficiency. The most commonly used animal
model is the non-obese diabetic/severe combined immunodeficient
(NOD/SCID) mouse. Recently, novel animal models have been devel-
oped such as the chronically anemic SCID, the NOD/LtSz-scid and the
IL-2Rγc null (NSG) mice. The latter is a strain of NOD/SCID derived line
that is among the most immunodeficient animal models described to
date. Overall, the animal models that are used for evaluating the ex vivo
generated RBCs should be able to recapitulate the conditions of clinical
transfusion settings. Often however, a model is designed in a way that
makes it more suitable for addressing a specific experimental question.
For example, an anemic mouse is most appropriate to study the oxygen
delivery of cultured RBCs, whereas a deeply immunodeficient mouse is
better suited for studies that question the survival of transplanted cells
[17,18]. Clearly, human trials are far more complicated and to date
there is only one report of testing manufactured RBCs on a single
human recipient [19].

2.1. Ex vivo generation of RBCs from HSPCs

Haematopoietic stem/progenitor cells (HSPCs) are CD34+ cells that
can be isolated from bone marrow (BM), peripheral blood (PB) and cord
blood (CB). The ability of those cells to promote ex vivo erythropoiesis
has been studied by many research teams. The protocols include ad-
dition of specific combinations of growth factors to the cell culture
medium in a sequential fashion [20].

Initially, Neildez-Nguyen et al. reported the generation of RBCs
from HSPCs isolated from CB. The culture method involved the cyto-
kines Flt3 ligand, thrombopoietin, stem cell factor, erythropoietin, and
insulin like growth factor I, added at three sequential culturing steps.
The production of erythroid precursors was characterized by low en-
ucleation efficiency (4%) and expression of foetal haemoglobin (HbF).
The cells however, could further differentiate into enucleated RBCs in
vivo by injection into NOD/SCID mice [21].

Three years later, Giarratana et al. used a similar three step culture
protocol that included feeder stromal cells of murine origin (MS-5 cell
line) in an attempt to recapitulate the bone marrow milieu. Under these
conditions, enucleated RBCs were produced by either CB or PB HSPCs

at high rates (up to 100%), which survived normally post infusion in
NOD/SCID mice. The amplification was tenfold higher for CB HSCPs
(106) compared to PB HSPCs (105). However, this promising method is
not clinically applicable due to the enormous demands in culture area
(approximately 150 km2) and the consequent lack of cost-effectiveness
[22].

In 2011 the same group reported the proof of principle for trans-
fusion of ex vivo manufactured RBCs starting from PB CD34+ HSPCs in
human. Their survival in vivo was comparable to that of native RBCs
(half-life of 26 days versus 28 ± 2 days for the native RBCs). Despite the
small number of RBCs produced by this method (equivalent to 2 mL of
packed RBCs), the study remains a major step forward since it was the
first case of a clinical grade cultured product that was tested success-
fully in human [19].

Satisfactory RBCs expansion from CB HSPCs has been also shown fol-
lowing co-culture with BM- or CB-derived mesenchymal stem cells. The
enucleation levels were approximately 64% [23]. Despite the fact that the
feeder cell co-culture system provided high expansion and enucleation rates
in cultured cells, it has many drawbacks such as difficulties in isolating pure,
non-contaminated RBCs, presence of xenogeneic cell types (when cells of
murine origin are used), variability in CD34+ expansion and issues of al-
logenicity when human MSCs are used.

Undoubtedly, the adaptation of feeder-free protocols could reduce
both cost and complexity involved. Towards that direction, many pro-
tocols have developed and optimized, with a production level of up to
2 × 108 RBCs in bioreactors [24,25]. Moreover, high-yield results were
recapitulated by using an FBS-containing culture medium in a roller
bottle culture system. By similar robust expansion processes, it could be
feasible to produce over 500 units of RBCs starting from one CB unit (5
million CD34+ cells) [26]. Finally, in an attempt to develop a feeder
layer- and FBS-free culture process Poloxamer 188 (a polymer with
cytoprotective function against hydrodynamic stress) has been applied,
which showed high enucleation rate (95%) and enhanced survival of
mature RBCs [27].

What has become clear from those studies was that CD34+ from
different sources exhibit different erythropoietic potential [28]. And
although PB CD34+ would be an ideal source for manufacturing au-
tologous RBCs (especially in cases with alloimmunization or rare blood
groups) the low number of circulating HSPCs (without GSCF mobili-
zation) and their lower expansion potential pose limitations for routine
clinical adaptation.

2.2. Ex vivo generated RBCs from ESCs

Embryonic stem cells (ESCs) are derived from the inner cell mass of
blastocysts, namely, of mammal embryos at early developmental stage.
They were initially isolated from mouse embryos in the early 1980s and
have been thereafter, a great tool for basic biology and experimental
medicine [29]. ESCs, when kept in culture under certain conditions,
have the potential of indefinite self-renewal without differentiation.
However, when allowed to differentiate back into a host blastocyst,
they maintain the ability to generate cells of all three germ layers, a
gold standard feature for defining the pluripotency of a stem cell [30].

ESCs from human sources (hESCs) are generated after in vitro fertili-
zation; the major disadvantage of using these ESCs is the ethical issues that
arise by their origin, and hence, limitations of integrating them into clinical
applications. hESCs have the advantage of being able to divide approxi-
mately 300 times while retaining their normal karyotype, pluripotency and
full-length telomeres [31]. Differentiation of ESCs begins when factors that
specifically contribute to the maintenance of the stem cell state, are with-
drawn. Three basic methods are used to trigger differentiation: (i) formation
of three-dimensional colonies, the embryoid bodies (EBs), (ii) co-culturing
with stromal feeder cells and (iii) culturing on a layer of extracellular matrix
proteins [32–34].

The ability of hESCs to differentiate into haematopoietic cells and
thus, to the erythroid cell line, was studied with protocols involving EB
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formations and co-culture system [35–37]. The stromal cells used in
most experiments were derived from non-human cell lines. The EBs-
based systems resulted in erythropoiesis that resembled morphologi-
cally the stage of definitive erythropoiesis, except for haemoglobin that
was of embryonic or foetal stage [38].

Initially, Lu et al managed to isolate haemangioblasts, namely bi-
potential precursors of haemopoietic and endothelial cells, which could
differentiate in multiple haemopoietic lineages including erythroid
lineage. Two limitations were observed, namely the lack of enucleation
and the expression of foetal haemoglobin [39]. An improved protocol
by the same group led to enucleation of 65% of cells and expression of
adult haemoglobin after prolonged culture time in a proportion of cells
(15%). By applying this protocol, however, only 1010-1011 RBCs were
developed, compared to the unit of packed RBCs that contains ap-
proximately 2 × 1012 cells [40].

Definite erythropoiesis (enucleation along with adult haemoglobin
expression) and robust RBC expansion remain an issue when ESCs have
been used as the primary source of cells. According to many studies,
culture time lengthening or forcing the expression of transcription
factors involved in erythropoiesis, e.g. RUNX1a or HOXB4, would en-
hance the expression of beta-globin genes [41–44]. Finally, a more ef-
ficient, serum- and feeders-free potential system for differentiation has
been also validated [45].

2.3. Ex vivo generated RBCs from iPSCs

Generation of induced pluripotent stem cells (iPSCs) was based on
the methodology developed by Yamanaka’s laboratory in 2006; iPSCs
were produced by reprogramming somatic cells back to inner cell mass-
like cells through forced experimental expression of a set of four genes
(Oct3/4, Sox2, c-Myc and Klf4) [46]. Human iPSCs may derive from
any somatic cell and behave similarly to hESCs; they are capable of self-
renewal, large-scale expansion and differentiation into all cell types of
the three germ layers in vitro. The major advantage of iPSCs over ESCs,
however, is that they can be produced from any cell type, allowing thus,
selection of donor’s phenotype without posing the ethical dilemmas
arisen by using ESCs. On the other side, the main disadvantage of iPSCs
is that not efficient reprogramming may lead to a mix of fully and
partially reprogrammed cells and thus, to a far from perfect technology
to pluripotency. Several iPSC generation protocols that involved stra-
tegies for avoiding viral transfer of genes have been developed, the
most recent and encouraging of which refer to entering key genes into
the cell via episomal carriers, synthetic RNA transcripts and through
recombinant proteins. Protocols used for ex vivo expansion are similar
to those of ESCs and include formation of EBs or use of co-cultures with
feeder cells [47–50].

Establishment of iPSCs from dermal fibroblasts of a Bombay blood
type individual was first reported in 2009, by applying the Yamanaka’s
technique [51]. The pluripotent cells had the characteristics of hESCs:
they could differentiate into all three haemopoietic cell lines and ex-
pressed HbF. In 2010 Lapillonne et al. designed for the first time a two-
step cell culture protocol for the direct commitment of foetal and adult
fibroblasts-derived human iPSCs to definitive erythropoiesis. Despite
success in reprogramming, the amplification and enucleation rates
differed significantly compared to those involving ESCs (10% vs 66%).
Moreover, haemoglobin synthesis was blocked at the stage of HbF, in-
dependently of the origin of the reprogrammed cells [52].

As shown later on, iPSCs can achieve terminal maturation in terms
of enucleation in vitro, but complete maturation, in terms of both en-
ucleation and haemoglobin switch happens only in vivo, that is, in an
adult haematopoietic microenvironment, following injection and ma-
turation of progenitors into NOD/SCID mice in situ. Thus, the iPSCs can
walk all the erythroid way ahead toward full maturation but not under
the current in vitro differentiation context. Mature RBCs were kept in
circulation for four days and the total cell number generated from
1 × 106 iPSCs was 15 to 28,3 × 108 RBCs [53]. To improve enucleation

rate, inhibition of specific miRNAs (i.e. miR30 A) was proposed [54].
Recent advances in the scale-up production include:

a) development of a good manufacturing practice (GMP)-compatible,
feeder-free and serum-free method that takes advantage of small
molecule effectors to specifically promote erythroid differentiation
of hPSCs (with a potential to generate 50.000–200.000 erythroid
cells from one HSPC) [12,55] and,

b) application of expanded cultures of iPSCs and ESCs in spinner flasks
[56]. ESCs seem to be superior to iPSCs in terms of expansion and
enucleation rate but still both sources are inferior to the potential of
CB and PB CD34+ cells, posing thus limitations for scale up pro-
duction necessary for clinical applications.

2.4. Immortalized cell lines

Robust and reproducible erythroid precursor immortalization
techniques may finally provide efficient numbers of viable and func-
tional RBCs for clinical use in vitro. The first demonstration of the
feasibility of using immortalized human erythroid progenitor cell lines
as an ex vivo source for producing RBCs came in 2013, by using the
HPV16-E6/E7 oncogene and forced expression of the transcription
factor TaL-1 that is essential for the early haemopoiesis. Nakamura’s
laboratory developed cell lines able to produce enucleated RBCs
(though at a low efficiency) with functional haemoglobin after differ-
entiation in vitro [57].

An immortalized erythrocyte progenitor cell line was also developed
by the transduction of c-MYC and BCL-XL into multipotent haemato-
poietic progenitor cells derived from pluripotent stem cells.
Differentiation was achieved by turning off the overexpression of those
factors. The cells expressed foetal haemoglobin and showed high rates
of enucleation following injection into NOD/SCID mice [58].

In 2017, Trakarnsanga et al. generated the first human im-
mortalized adult erythroid line (BEL-A) by introducing the HPV16 E6/
E7 oncogenes into bone marrow CD34+ cells. BEL-A RBCs had bio-
chemical and structural features of normal erythropoiesis and devel-
opmental potential to functional, enucleated reticulocytes that survived
in vivo expressing mainly haemoglobin A [59]. This year, the first proof
of principle for the feasibility of scaling up erythroblast expansion in
controlled bioreactors by using the ImEry cell line was reported. These
cells were derived from immortalizing CD71+CD235a+ erythroblasts
isolated from adult PB. The generated RBCs seemed to share common
metabolic and functional characteristics with those of adult RBCs [60].

3. Obstacles that need to be overcome

The erythroid cells that are intended to usage in clinical applications
must be produced at a large scale and at a terminal differentiation state.
It is well established that the culture conditions affect the proliferation
potential of the cultured progenitor erythroid cells as well as their en-
ucleation capability. Conditions such as the kind and the concentration
of growth factors or the timing of their administration in the three-step
culture system mentioned above, seem to have a significant impact on
the efficiency of enucleation; these conditions need to be optimized and
further defined.

Deep knowledge of peptides and molecules that play an integral role
in definite erythropoiesis and their (or counterpart imitators, such as
the erythroid macrophage peptide or VCAM-1) supply exogenously
could induce enucleation through ligand-receptor interactions [55,61].
Additionally, for an optimization of the differentiation process and
stable enucleation in vitro, mifepristone (an antagonist of glycocorti-
coid action), or factors involved in vesicle trafficking have been applied
in the culture systems [62,63]. In the same context, histone acetyl-
transferases or histone deacetylases involved in chromatin remodeling,
and caspases involved in apoptosis could also serve as possible targets
for the in vitro modification of the enucleation process. However,
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chromatin remodeling factors are non-specific, affect many genomic
regions and might be able to either downregulate genes which are vital
to cell functions or activate silenced oncogenes. The long-term con-
sequences of using such agents require further studies [64,65].

Beyond culture conditions, usage of feeder cells has the potential to
enhance maturation and optimize cell population expansion, but the
presence of foreign material sets essential restrictions on clinical ap-
plications since (i) the cost is higher due to the huge number of stromal
cells required, (ii) the technique is more complicated, and (iii) the
stromal cell lines carry the risk of contamination by xenogeneic pa-
thogens [22,23,66]. In addition, the common static culture conditions
have failed to reach the required expansion of ex vivo generated RBCs.
A major step forward has been materialized with bioreactors that allow
three-dimension cell growth and consequent increments in production
yields [24,25,56].

It seems that the best way to increase the production of RBCs would
be the generation of committed cell lines derived from the ideal stem
cell source, that is a cell population able to provide unlimited pro-
liferation. Genetic manipulation of these cell lines is unlikely to be an
obstacle to their clinical application, provided that the cells are en-
ucleated. This can be ensured by filtration or by irradiation. Moreover,
in order to maintain genetic and epigenetic stability of the cell lines,
periodical controls should be performed on their genotype [57–60].

3.1. Functional issues

During the ex vivo production of RBCs, additional controls are re-
quired for testing the multiple physical and biochemical factors that
characterize the final product. The manufactured RBCs mostly resemble
the native RBCs that are generated under stress conditions, since they
are slightly macrocytic and express greater amounts of HbF, a fact that
clearly affects the oxygen dissociation curve. However, transfusing
HbF-containing RBCs may not be contraindicated taking into account
the fact that subjects with hereditary persistence of foetal haemoglobin
(HPFH) are asymptomatic and moreover, increase in HbF expression is
the aim of targeted therapies in patients with haemoglobinopathies,
such as sickle cell disease [67,68]. In contrast, the metabolic pathways
and the proteome of the produced RBCs show a high degree of simi-
larity to the native RBCs, indicating that the manufactured cells have a
closer affinity with their native counterparts at those functional levels
[67]. Nevertheless, differences have been reported depending on the
stem cell sources used. Another consideration is the high heterogeneity
of the expansion and enucleation potentials, as well as of the hae-
moglobin type that is expressed. Indeed, both hESC- and iPSC-derived
cells have low enucleation capability and express mainly embryonic
and foetal globin genes. Additionally, the reported yields from these
sources are lower in comparison to those reported from HPSCs [69,70].

3.2. Scaling issues

The use of bioreactor systems has enabled scale up culture of HSCs
and erythroid cells. The clinical application of RBCs generated ex vivo
requires mass production (1012 cells/unit) of a safe and functional
product at an acceptable cost. The calculated cost ranges from
8,000–15,000 USD if hPSCs serve as a source [25]. Usage of low-cost
media and reagents, replacement of culture media with small mole-
cules, omission of the feeder cells and generation of erythropoietic cell
lines, may result in a more cost-effective product. Safety issues, such as
accidental transmission of harmful agents and immunogenic reactions,
may be overcome if the protocols used for the production of ex vivo
RBCs comply with the Good Manufacturing Practice (GMP) [45,55,71].

3.3. Clinical applications

Manufactured RBCs from selected donors are currently applied as
reagent RBCs for antibody identification in alloimmunized patients, and

as a vehicle for drug delivery [13]. The design of clinical trials for
testing transfusion of ex vivo generated RBCs should be careful since
there are still several inconsistencies in the procedures and the proto-
cols. In vitro generated RBCs should be compatible with ABO and
Rhesus antigens (a sum of eight antigens), suggesting that eight dif-
ferent erythroid cell lines would be sufficient to supply the transfusion
demands of the majority of world’s population [59]. It is anticipated
that ten clones of human iPSCs representing the most common RBC
phenotype combinations could meet the need for transfusion of 99.43%
of alloimmunized patients [52]. Alternatively, RBCs can be produced by
using healthy O Rh negative or Bombay blood type donors or by ap-
plying innovative techniques which omit blood group antigens (enzy-
matic cleavage or antigen masking), providing thus universal RBCs for
all recipients [72–74]. It is a fact that this innovative medical product
has stimulated scientific interest, and as research continues in this di-
rection, it is anticipated that RBCs production ex vivo will definitely
become a significant tool in the field of transfusion therapy in the near
future. The first clinical application of in vitro generated RBCs would be
in rare blood groups and chronic transfusion dependent patients.

4. Conclusions

At the beginning of the 21 st century, the deeper knowledge of
haematopoiesis in general and of erythropoiesis in particular, as well as
the constant evolution in the field of scientific and technological ad-
vances, seem to make feasible the in vitro generation of RBCs for
transfusion in the near future. However, many improvements are ne-
cessary, in order to achieve this goal. As proof-of-principle, ex vivo
production of RBCs with the functional characteristics of native RBCs
has been achieved. It is a matter of cost-efficient scaling to allow this
technology to reach clinical applications, and in this leap forward, in-
dustrial development will have a major input.
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